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Speeding up Constraint-Based Program Repair
Using a Search-Based Technique

Jooyong Yi and Elkhan Ismayilzada
Information and Software Technology, 2022



Constraint-Based Program Repair (Angelix)

W*i'.'e(x>v){ 1 W*?.'.'e(f){ S2 3 2 true 3 while (x>=y)
} } 3 3 true }...
2 3 false
1 4 false
Test suite

S1. A search for suspicious expressions (via statistical fault localization)
S2. A search for the specification of the identified suspicious expressions
S3. A search for patch expressions that satisfies the extracted
specification



Angelix is unnecessarily slow
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Why Slow?

1if (x < vy)
X =YV;
1if (x < vy)
z = foo(x);
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Why Slow?
Reason 1: Angelix performs exhaustive search
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Angelix performs exhaustive search to find a minimal repair

(«)

max_range_endpoint = 3;

(7)
printable_field = xzalloc(max_range_endpoint/CHAR BIT+1);

{m1 : {(a, False,o01), (v, False, 02)),
72 : ((a, True,03),(8,0,04), (v, False,os))}

(0)

max_range_endpoint = eol_range_start;

(! (max_range_endpoint == 0))
printable_field = xzalloc(max_range_endpoint/CHARBIT+1);
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Angelix performs exhaustive search to find a minimal repair

&Mb(x>w{

}

Test suite
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while () {
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Finding Minimal Repair via Partial MaxSMT

X>Yy —)
faulty

X>=y (e
patch

val (p;)==x A val(p,)==y A val(pgy)==expr
Pe==Ps I

A (pe==p;) ==> (val(p;) > val(py)) == val(ps)
A (pe==pg) ==> (val(p;) >= val(py)) == val(ps)

Soft Clauses‘/\ (P1==p3) A (P2==ps) A [(Pe==Pz) N (Ps==Dpo)

S

A (* inferred spec *)
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FAngelix idea 1: Guided search

— symbolic execution

= =»  ourguided execution
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Guided search via MCMC sampling

Space of execution paths

e ,0: {"18-15-18-19": [1,1,1,1,1,1,1, 0, 0, 0, O]}
 cost’| 2OtX|= IO 2 F & (cost’} 00| ™ angelic path)



Spec Inference Algorithm

while O # O. A CONTINUE(N, C) do
Space of execution paths /* perform MCMC sampling */

S’ + PROPOSE(S)

0,S* «+ RuN(Z, S")

C* + CosT(0, O.)

if AccepT(C,C*) then

S,C + §*,C~

end if

N+ N+1
end while
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Accept Function

* Metropolis-Hastings acceptance probability with a cost function

a(S > S*) =min(1,exp (-f - k) -

where

k = c(S%) — ¢(S)

q(S1S7)

q(5%1S) )

y=exp(-0.3k)

1_0
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Assignment bugs

X=E=»x=a

Run symbolic execution

If o does not flow into a conditional expression, solve Oa(a) = Oe

Otherwise,
* record an executed path as a bit-vector
* perform a guided random search as before and solve pc(a) A Oa(a) = Oe



An Example of Cost

Ooco~NOTULTPHAWNPE

<?php

$sim = similar_text('ABCD', 'AB', $perc);
echo "similarity: $sim ($perc %)\n";
$dist = 100 - $perc;

echo "distance: $dist\n\n";

$sim = similar_text('ABCD', 'ABC', $perc);
echo "similarity: $sim ($perc %)\n";

$dist = 100 - $perc;

echo "distance: $dist\n\n";

$sim = similar_text('ABCD', 'ABCD', $perc);
echo "similarity: $sim ($perc %)\n";

$dist = 100 - $perc;

echo "distance: $dist\n\n";

Result:

similarity: 2 (66.666666666667 %)
distance: 33.333333333333

similarity: 3 (85.714285714286 %)
distance: 14.285714285714

similarity: 4 (100 %)
distance: 0
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FAngelix idea 2: No exhaustive search
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Angelic path ‘S X (refinement)

« H 7] path:
{"18-15-18-19": [1, 1, O, O]}
« &OLEI angelic path:
{"18-15-18-19": [1, 0, 1, O]}
« X =l angelic path:
{"18-15-18-19":[1, 1, 1, O]}
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Subject LoC Tests Versions
WIRESHARK 2814K 63 5!
PHP 1046K 85 21
Gzip 491K 12 4
GMP 145K 146 2
LIBTIFF 77K 78 18
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Sk

— } else if (td—=>td_nstrips > 1

&4&: td—>td_compression — COMPRESSION_NONE
+ } else if (td—=td_nstrips > td->td_nstrips

84&: td—>td_compression — COMPRESSION_NONE

(a) An incorrect patch generated from Angelix

— } else if (td—>td_nstrips > 1

84 td—>td _compression — COMPRESSION_NONE
+ } else if (td—=>td_nstrips > 2

&4&: td—>td_compression — COMPRESSION_NONE

(b) A correct patch generated from FAngelix



repair time (s)
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Verifix: Verified Repair of Programming Assignments
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Overfitting Problem

Incorrect Patch

, Correct program

Test4
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Overfitting Problem

void main(){
int nl, n2, iI;
scanf("%d _%d", &n1, &n2);
if(n2 <= 2) // Repair #1: Delete spurious print
printf("%d ", n2); // Verifix v/, Clara X

for(i=n1; i<=n2; i++){
if (check_prime(i)==0) // Repair #2: Delete ==
printf("%d_ ", i); // Verifix v/, Clara v/
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Overfitting Problem
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Approach

. : : int check_prime(int n)
int check_prime(int n) {

{

if (n == 1)

return 0; int i:
int j; for(i=1;i<=n—T1;i++)
for(j=2; j<n; j++) {
{ if (n%i == 0)

if (n%j == 0) break;

return 0; }

} return 1;
return 1; }

Reference program Incorrect student program



Program > Control Flow Automata

int check_prime(int n)

{

if (n == 1)

return 0;

int j;
for(j=2; j<n; j++)
{
if (n%j == 0)
return 0;

}

return 1;

Reference program



Program > Control Flow Automata

int check_prime(int n)

{
int i;
for(i=1;i<=n—1;i++)
{
if (n%i == 0)
break;
}
return 1;
}

Incorrect student program




Aligning CFAs and variables
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{ret & ret’,n & n’,j & i’}

1 1
Pedge * ¢q1q’1 AYr A5 A quzq;

Gqiq:  (reto =rety) A (no = ng) A (jo = i
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Minimal Edge Repair via CEGIS
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Minimal Edge Repair via CEGIS

1 1
Pedge * ¢q1q’1 ANYr ANYs A _'¢qzq; — >

solver

1 SMT
¢qlqi A ¢r /\){/\ _'¢qu; A ¢ce - solver
I

(ng#1 = i;=1) A ((nyg#1) = i;=1iy)



Minimal Edge Repair via CEGIS

1. 1 SMT o
(pedge ) ¢q1q1 A ¢r N\ ¢s N\ _'¢qzq; —_— gbie : g = n(’) = 1,J0 = l(') =0

solver

1 SMT
¢q1q; A ¢r /\){/\ _'¢qzq; N ¢ce — solver — Unsat
T

(ng#1 = i;=1) A ((nyg#1) = i;=1iy)

Yr: (no#1 = j1=2) A (0(ng#1) = j1=jo)
l//slz (True = i{ =1) A (—-True = i; = l(’))



Minimal Edge Repair via CEGIS
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Minimal Edge Repair via CEGIS
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Relative Patch Size (RPS)

RPS = Dist(ASTs, ASTr)/Size(ASTs)



Lab-ID | # Prog- Repair (%) Struct. Mismatch (%)

rams | Clara Verifix | Clara Verifix
Lab-3 63 | 54.0% 92.1% 0.0% 0.0%
Lab-4 117 | 71.8% 74.4% 7.7% 71.7%
Lab-5 82 | 22.0% 45.1% | 75.6% 35.4%
Lab-6 79 | 12.7% 21.5% | 83.5% 69.6%
Overall 341 | 42.8% 58.4% | 40.2% 27.2%




Clara and Sarfgen fail to handle our example

int check_prime(int n)

int check_prime(int n) {
{
if (n == 1)
return 0; int i:
int j; for(i=T1;i<=n—T1;i++)
for(j=2; j<n; j++) {
{ if (n%i == 0)
if (n%j == 0) break ;
return 0; }
} return 1;
return 1; }
}

Reference program Incorrect student program
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Testing Patches Under Preservation Conditions To Combat the Overfitting
Problem of Program Repair

Elkhan Ismayilzada, Md Mazba Ur Rahman,
Dongsun Kim, Jooyong Yi
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Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

- double ret;
+ double ret = 1.0;
double d = getDenominatorDegreesOfFreedom();
+ if (d > 2.0) {
ret =d / (d — 2.0);

double ret;
double d = getDenominatorDegreesOfFreedom();
-ret=d/(d - 2.0);

+ret=d/(d+ 2.0); \
+
(a) An incorrect patch for Math95 (b) A correct patch for Math95.



Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

}
PATCH-SIM & -&: 2= (14) incorrect patchE =HIE I X| 2 Q4]
- double ret;
double ret: + double ret = 1.0;
double d = getDenominatorDegreesOfFreedom(); im:jble d = getDenominatorDegreesOfFreedom();
-ret=d/(d - 2.0), +if (d > 2.0){
+ret=d/(d+ 20); } ret =d/(d — 2.0);
+

(a) An incorrect patch for Math95 (b) A correct patch for Math95.



Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

| ODS M&: 2HIZ M| E Q2= TjX|Z QIAl
- double ret;
double ret; + double ret = 1.0;
double d = getDenominatorDegreesOfFreedom(); double d = getDenominatorDegreesOfFreedom();
- ret=d/(d — 2.0); +if (d > 2.0) {
rret=d/(d+20); ) ret =d/(d - 2.0);

(a) An incorrect patch for Math95 (b) A correct patch for Math95.
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public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/+ expected output =/ 0.975, x, /+ delta =/ 1.0e—5);

public void testSmallDegreesOfFreedom(double d1,
double d2, double d3) {
FDistributionlmpl fd = new FDistributionlmpl(d1, d2);
double p = fd.cumulativeProbability(d3);
double x = fd.inverseCumulativeProbability(p);
// Which expression should be used in the following blank
// to express the correct output for a given random input?
assertEquals(/= expected output */ , X, /+ delta »/ 1.0e—5);

inf{x in R | P(X <= x) >= p} for 0 < p<=1
inf{x in R | P(X<=x)>0}forp=0



Change Contract [ISSTA'13]

Stack.scc

public class Stack<E> {

/*¥@changed_behavior
@ when_signaled (IllegalStateException e)
@ e.getErrorCode() == 100; // observed erroneous behavior
@ signals (IllegalStateException e) false; // should be fixed
@x/
public void push(E item);
¥




Preservation Condition

public void testSmallDegreesOfFreedom(double d1,
double d2, double d3)
try {
FDistributionlmpl fd = new FDistributionlmpl(d1, d2);
double p = fd.cumulativeProbability(d3);
double x = fd.inverseCumulativeProbability(p);
Log.logOutlf(/+ preservation condition +/true,
/= outputs to compare «/ () —> new Double[] {x});
} catch (Exception e) {
// original (pre—patched) version: ignore
// patched version: log a predefined message
Log.ignoreOutOfOrg();

PFlog(A) ifP (@) =t
} Pl—logOutlf((p,/l):{ + log(A) org Feval(g) = true

P+ nop otherwise

h



Preservation Condition

public void testGed(int i, int j) {
/= Original body:
try {
MathUtils.gcd(Integer. MIN_VALUE, 0);
fail("expecting ArithmeticException");
} catch (ArithmeticException expected) { // expected } «/
try {
final long actual = MathUtils.gcd(i, j);
boolean complement = !( (i==Integer. MIN_VALUE && j==0)
|| (i==0 && j==Integer.MIN_VALUE) );
Log.logOutlf(complement, () —> new Long[] { actual });
} catch (ArithmeticException e) {
Log.logOutlf(!complement, () —> new String[] { e.toString() });
} catch (Exception e) { Log.ignoreOutOfOrg(); }



A Ty

e PATCH-SIM[ICSE’18] L O] E{ Al
* 139 patches (77 buggy versions)
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Patches Precision Recall
Project Incorrect | Correct || PORACLE PALCH OPAD PORACLE FALCH OPAD
-SIM -SIM
Chart 24 / 24 212 100% / 100% | 100% / 100% | 67% |/ 67% 71% / 71% | 58% / 58% | 8% / 8%
Lang 11/ 32 4/19 100% / 100% | 100% / 65% 50% / 50% 82% /59% | 54%/ 34% | 9% / 3%
Math 64 /250 | 19/ 98 100% / 99% | 100% / 96% 81% / 68% 62% / 59% | 52% | 26% | 27% /| 16%
Time 13/ 20 2413 100% / 100% | 100% / 100% | 100% / 100% || 77% / 63% | 69% / 50% | 54% |/ 40%
Total 112/326 |27 /132 || 100%/99% | 100% / 92% 82% | T1% 70% / 60% |55% / 31% | 24% | 16%




SRR
Bty Patches Precision Recall
J Incorrect Correct PORACLE ODS PORACLE ODS

Chart 23 /23 22 100% / 100% 100% / 100% 70% |/ 70% 57% | 57%
Lang 10/ 26 3/10 100% / 100% 100% / 78% 80% /58% 90% / 96%
Math 60/ 177 19/ 64 100% / 99% 92% |/ 90% 68% / 61% 55% / 84%
Time 13/ 16 2./ 100% / 100% 92% | 70% 77% | 69% 85% /| 88%
Total 106 / 242 26 / 83 100% / 99% 94% | 88% 71% |/ 62% 62% | 83%
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(a) Rightly rejected patches

Poracle

(b) Rightly accepted patches
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Preservation Condition2| complexity
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