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Constraint-Based Program Repair (Angelix)
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while (x >= y) {

…
}
...

…
while (E) {
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while (x > y) {
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2 3 false

1 4 false

S3

Test suite

S1. A search for suspicious expressions (via statistical fault localization)
S2. A search for the specification of the identified suspicious expressions
S3. A search for patch expressions that satisfies the extracted 
specification



Angelix is unnecessarily slow
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Why Slow?
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1 …
2 if (x < y)
3 x = y;
4 if (x < y)
5 z = foo(x);
6 …



Why Slow?
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1 …
2 if (𝜶)
3 x = 𝜷;
4 if (𝜸)
5 z = foo(x);
6 …

𝝅1 𝝅2 𝝅3 𝝅4



Why Slow?
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𝝅1 𝝅2 𝝅3 𝝅4

1 …
2 if (𝜶)
3 x = 𝜷;
4 if (𝜸)
5 z = foo(x);
6 …



Why Slow?
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𝝅1 𝝅2 𝝅3 𝝅4

1 …
2 if (𝜶)
3 x = 𝜷;
4 if (𝜸)
5 z = foo(x);
6 …

path 𝜶 𝜷 𝜸
𝝅2 T 0 F

angelic path



Why Slow?
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𝝅1 𝝅2 𝝅3 𝝅4

1 …
2 if (𝜶)
3 x = 𝜷;
4 if (𝜸)
5 z = foo(x);
6 …

path 𝜶 𝜷 𝜸
𝝅2 T 0 F



Why Slow?
Reason 1: Angelix performs exhaustive search
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𝝅1 𝝅2 𝝅3 𝝅4

1 …
2 if (𝜶)
3 x = 𝜷;
4 if (𝜸)
5 z = foo(x);
6 …

path 𝜶 𝜷 𝜸
𝝅2 T 0 F

𝝅4 F - F

angelic forest



Angelix performs exhaustive search to find a minimal repair
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Angelix performs exhaustive search to find a minimal repair
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…
while (x >= y) {

…
}
...

…
while (E) {

…
}
...

…
while (x > y) {

…
}
...

S1 S2
x y E

3 2 true

3 3 true

2 3 false

1 4 false

S3

Test suite

x y E

3 2 false

_

<latexit sha1_base64="jiohYozN7tWpJEfbEAUP/m25LCk=">AAACSHicbVDLSgMxFM3Ud33r0k2wCK7KjFR0KbpxqWAf0JaSSe+0ockkJHfEMvQX3Oo3+Qf+hTtx50zbhdN6IHA4597ce09opHDo+59eaWV1bX1jc6u8vbO7t39weNRwOrEc6lxLbVshcyBFDHUUKKFlLDAVSmiGo7vcbz6DdULHTzg20FVsEItIcIa51HkG6B1U/Ko/BV0mwZxUyBwPvUOv2ulrniiIkUvmXDvwDXZTZlFwCZNyJ3FgGB+xAbQzGjMFrptOl53Qs0zp00jb7MVIp+rfjpQp58YqzCoVw6Fb9HLxP6+dYHTdTUVsEoSYzwZFiaSoaX457QsLHOU4I4xbke1K+ZBZxjHLpzAl/9ugeilckjpUzI5tv6iGiXPGah25ok4TM7AAIzopl7OEg8U8l0njohrUqpePtcrN7TzrTXJCTsk5CcgVuSH35IHUCSdD8kreyLv34X15397PrLTkzXuOSQGl0i8VUbLO</latexit>

…
while (0) {

…
}
...



val(p1)==x ⋀ val(p2)==y ⋀ val(p9)==expr

⋀ (p6==p7) ==> (val(p3) > val(p4)) == val(p5)
⋀ (p6==p8) ==> (val(p3) >= val(p4)) == val(p5)

⋀ (p1==p3) ⋀ (p2==p4) ⋀ (p6==p7) ⋀ (p5==p9)

⋀ (* inferred spec *)

Finding Minimal Repair via Partial MaxSMT
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>
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x > y

faulty

x >= y

patch

Soft Clauses



FAngelix idea 1: Guided search 
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symbolic execution

our guided execution



Guided search via MCMC sampling

• 𝝅i예: {"18-15-18-19": [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]}

• cost가작아지는방향으로유도 (cost가 0이면 angelic path)



Spec Inference Algorithm
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Accept Function

• Metropolis-Hastings acceptance probability with a cost function

where 
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the input to Algorithm 2 provided by the user. In our experi-
ments, we de�ne the cost function as the distance between
the expected output Oe and the actual output.
At line 8, we similarly use c (O 0,Oe ) to obtain the cost

of an adjusted con�guration S
⇤. Note that O 0 refers to the

output of the program obtained where S⇤ is extracted.
Guided update of the current con�guration using the
A����� function. Not all proposed adjusted con�guration
S
⇤ leads to a smaller cost than the current con�guration.
In a case where S

⇤ leads to a smaller cost, we accept S⇤
with a high probability p as the next current con�guration,
following the Metropolis-Hastings algorithm (see below).
Conversely, if S⇤ does not lead to a smaller cost, S⇤ is rejected
with probability p < 1. The reason why S

⇤ is not rejected
with probability 1 is to avoid being stuck in a local minimum.
However, the rejection probability should increase as the
cost of S⇤ is larger than the cost of the current con�guration.
More concretely, we use the following cost-based Metropolis-
Hastings acceptance probability briefed in Section 2.

� (S ! S
⇤) = min

 
1, exp (�� · k ) · q(S |S

⇤)
q(S⇤ |S )

!
, (3)

where k = c (S⇤) � c (S ). Notation � (S ! S
⇤) represents

the acceptance probability which dictates the probability
of accepting S⇤ as the next current con�guration when the
current con�guration is S . The value of k shows the distance
between c (S⇤) and c (S ), and can be obtained using the cost
function c explained earlier.

A conditional probability q(S⇤ |S )—the probability of trans-
forming S into S⇤ using our P������ function—is computed
by multiplying the probability of transforming the bit vec-
tor of each expression. That is, given S =

S
e 2E {e : ~b} and

S
⇤ =

S
e 2E {e : ~b⇤},

q(S⇤ |S ) =
Y

e 2E
q(~b⇤ |~b)

where q(~b⇤ |~b) represents the probability of transforming ~b
to ~b⇤ using our P������ function. Similarly, q(S |S⇤)—the
probability of transforming S⇤ into S—is de�ned as follows.

q(S |S⇤) =
Y

e 2E
q(~b |~b⇤)

Note that q(~b⇤ |~b) equals q(~b |~b⇤) if |~b⇤ | = |~b |, as will be
clear after describing later how they are computed. Thus, if
|~b⇤ | = |~b | for all e 2 E in S

⇤ and S , then q(S⇤ |S ) also equals
q(S |S⇤), and the acceptance probability is simpli�ed to the
following.

� (S ! S
⇤) = min (1, exp (�� · k ))

Thus, in case the lengths of the all bit vectors in the current
con�guration are preserved in the proposed con�guration,

we use this simpler de�nition to compute the acceptance
probability � (S ! S

⇤).
However, the lengths of bit vectors are not always pre-

served between S and S
⇤ due to the dynamic adjustment

of con�gurations performed by our method. Recall that we
extend or truncate a proposed bit vector for a suspicious
expression e , depending on how many times e is actually
executed during runtime. In this case, q(~b⇤ |~b) does not equal
q(~b |~b⇤), and we use the �rst de�nition of the acceptance
probability shown in equation 3. In the below, we show how
we compute q(~b⇤ |~b). We compute q(~b |~b⇤) in a symmetric
way.

When |~b⇤ | > |~b |, this means that runtime occurrence of the
expression is more frequent than as speci�ed in a proposed
bit vector. In this case, ~b⇤ contains additional bits in its tail
that are randomly chosen at runtime. Since this tail is not
proposed by our P������ function, we truncate the tail from
~b⇤ and obtain ~b 0. Notice that |~b 0 | = |~b |. We later describe how
we compute an acceptance probability for two bit vectors
with an identical length.

When |~b⇤ | < |~b |, runtime occurrence of the expression is
less frequent than as speci�ed in the proposed bit vector. For
example, suppose that the current bit vector ~b at expression
e is 0010. Let us also assume that after executing a program
with a proposed con�guration, 010 is obtained as an adjusted
bit vector ~b⇤. Notice that |~b⇤ | is smaller than |~b | by one. Given
this situation, there are two possible scenarios where ~b (i.e.,
0010) is transformed into ~b⇤ (i.e., 010). The �rst possibility is
that the P������ function transforms ~b of expression e into
0100, and e is executed only three times due to the changes
of the bit vectors of other suspicious expressions. The second
possibility is that ~b is transformed into 0101 instead of 0100,
and e is executed only three times. We should consider both
possibilities when computing q(~b⇤ |~b). More generally, we
compute q(~b⇤ |~b) as follows when |~b⇤ | < |~b |:

q(~b⇤ |~b) =
X

~b0 2Ext ( ~b⇤ )

q(~b 0 |~b)

where function Ext extends the given ~b⇤ to the length of |~b |.
In our example, Ext (010) = {0100, 0101}. Note that |~b 0 | = |~b |.

When |~b 0 | = |~b | = l , we compute q(~b 0 |~b) as follows. Recall
that our P������ function chooses either to �ip 1 bit with
probability p1 or to �ip n bits, where 0  n  |~b |, with
probability 1 � p1. Given ~b and ~b 0, we know how many bits
are �ipped and which bits are �ipped. The probability of
�ipping particular chosen k bits, where k , 1, is as follows:

(l + 1)�1 ·
 
l

k

!�1
· (1 � p1)
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Assignment bugs

• x = E è x = α

• Run symbolic execution

• If α does not flow into a conditional expression, solve Oa(α) = Oe
• Otherwise,

• record an executed path as a bit-vector
• perform a guided random search as before and solve pc(α) ∧ Oa(α) = Oe



An Example of Cost
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FAngelix idea 2: No exhaustive search 
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Angelic path 정제 (refinement)

• 버기 path:
{"18-15-18-19": [1, 1, 0, 0]}

• 찾아진 angelic path:
{"18-15-18-19": [1, 0, 1, 0]}

• 정제된 angelic path:
{"18-15-18-19": [1, 1, 1, 0]}
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실험



실험결과



실험결과



실험결과 (최대 23배, 평균 3.5배속도향상)



실험결과 (최대 23배, 평균 3.5배속도향상)



실험결과 (최대 23배, 평균 3.5배속도향상)



Cost 사용이효과가있는가?



Cost 사용이효과가있는가?



Cost 사용이효과가있는가?



Verifix: Verified Repair of Programming Assignments
UMAIR Z. AHMED, ZHIYU FAN, 
JOOYONG YI, OMAR I. AL-BATAINEH,
ABHIK ROYCHOUDHURY

TOSEM, 2022



Overfitting Problem

32

Correct program

Incorrect Patch

Test1
Test2

Test3

Test4



Overfitting Problem



Overfitting Problem



Approach

Reference program Incorrect student program



Program à Control Flow Automata

Reference program



Program à Control Flow Automata

Incorrect student program



Aligning CFAs and variables



각 edge별로검증수행



각 edge별로검증수행



Minimal Edge Repair via CEGIS

SMT
solver



Minimal Edge Repair via CEGIS

SMT
solver

SMT
solver Unsat



Minimal Edge Repair via CEGIS
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SMT
solver Unsat



Minimal Edge Repair via CEGIS

SMT
solver



Minimal Edge Repair via CEGIS

SMT
solver Unsat



실험

• 실험대상:
• 28개의프로그래밍문제로부터취합한 341개의컴파일가능한학생프로그램
• 이전연구[FSE’17]에서취합한데이터 (Indian Institute of Technology Kanpur)
• 각문제마다 instructor가작성한정답프로그램과테스트케이스존재
• 비교대상: Clara [PLDI’18]

• C 프로그램을지원하는최신의공개된도구



패치크기비교



패치성공률비교 (단일한정답프로그램사용시)



Clara and Sarfgen fail to handle our example

Reference program Incorrect student program



패치성공률비교 (다수정답프로그램사용시)



Testing Patches Under Preservation Conditions To Combat the Overfitting 
Problem of Program Repair

Elkhan Ismayilzada, Md Mazba Ur Rahman,
Dongsun Kim, Jooyong Yi



다수의 Plausible 패치존재



Patch Classification 문제

• 생성된 plausible patch가 correct한패치인가?



Patch Classification 문제예



Patch Classification 문제예

PATCH-SIM 적용: 모든 (14) incorrect patch를올바른패치로인식



Patch Classification 문제예

ODS 적용: 올바른패치를그릇된패치로인식



Patch Classification의어려움

• Score-based 접근법:
• recall과 precision을모두높이도록임계값을설정하기어려움



Patch Classification의어려움

• Evidence-based 접근법:
• 패치된프로그램이새입력값에대해 crash를일으키면고려대상에서제외

• 일반적으로적용하기어려움
• Java 등의언어에서는 exception 생성이오히려기대되는테스트도존재



근본문제: 정확한명세의부재



Change Contract [ISSTA’13]



Preservation Condition



Preservation Condition



실험대상

• PATCH-SIM[ICSE’18] 데이터셋
• 139 patches (77 buggy versions)
• 기존연구[ICSE’20]에서 350 patches 추가



실험결과



실험결과



실험결과



JAID 실험결과



Preservation Condition의 complexity



정리

• FAngelix: 패치탐색효율성향상

• Verifix: 패치정확성보증

• Poracle: 패치정확성향상


