FAngelix, Verifix, and Poracle

20224 2 &
AT EQO I HALAME 2 24N
O| =& (UNIST)

Speeding up Constraint-Based Program Repair
Using a Search-Based Technique

Jooyong Yi and Elkhan Ismayilzada
Information and Software Technology, 2022

Constraint-Based Program Repair (Angelix)

W*i'.'e(x>v){ 1 W*?.'.'e(f){ S2 3 2 true 3 while (x>=y)
} } 3 3 true }...
2 3 false
1 4 false
Test suite

S1. A search for suspicious expressions (via statistical fault localization)
S2. A search for the specification of the identified suspicious expressions
S3. A search for patch expressions that satisfies the extracted
specification

Angelix is unnecessarily slow

;/.\;hile (x>vy){

}

S1

Test suite

;/.\;hile (E) {

}

S2

—

40 m
in libtiff

X
<
m

true

true

false

R N W W

W W N

false

S3

—-

<2m
in libtiff

while (x>=y) {

}

Why Slow?

1if (x < vy)
X =YV;
1if (x < vy)
z = foo(x);

O U1 b W DN

Why Slow?

O U W DN R

Tl

w2 13

y (LA

Why Slow?

O O x» W DN

w2 13

y (LA

Why Slow?

o U W N
X

n‘xl

w2 13

v

angelic path

y (LA

Why Slow?

o U W N
X

w2 13

y (LA

Why Slow?
Reason 1: Angelix performs exhaustive search

o U W N
X

angelic forest X

10

if

if

Angelix performs exhaustive search to find a minimal repair

(«)

max_range_endpoint = 3;

(7)
printable_field = xzalloc(max_range_endpoint/CHAR BIT+1);

{m1 : {(a, False,o01), (v, False, 02)),
72 : ((a, True,03),(8,0,04), (v, False,os))}

(0)

max_range_endpoint = eol_range_start;

(! (max_range_endpoint == 0))
printable_field = xzalloc(max_range_endpoint/CHARBIT+1);

11

Angelix performs exhaustive search to find a minimal repair

&Mb(x>w{

}

Test suite

S1

while () {

}

S2

—

3 2 true
3 3 true
2 3 false

1 4 false

V

3 2 false

S3 while (x>=y) {

}

;;hike(O){

}

Finding Minimal Repair via Partial MaxSMT

X>Yy —)
faulty

X>=y (e
patch

val (p;)==x A val(p,)==y A val(pgy)==expr
Pe==Ps I

A (pe==p;) ==> (val(p;) > val(py)) == val(ps)
A (pe==pg) ==> (val(p;) >= val(py)) == val(ps)

Soft Clauses‘/\ (P1==p3) A (P2==ps) A [(Pe==Pz) N (Ps==Dpo)

S

A (* inferred spec *)

13

FAngelix idea 1: Guided search

— symbolic execution

= =» ourguided execution

A’

S)

~ //
\\ ’/

Guided search via MCMC sampling

Space of execution paths

e ,0: {"18-15-18-19": [1,1,1,1,1,1,1, 0, 0, 0, O]}
 cost’| 2OtX|= IO 2 F & (cost’} 00| ™ angelic path)

Spec Inference Algorithm

while O # O. A CONTINUE(N, C) do
Space of execution paths /* perform MCMC sampling */

S’ + PROPOSE(S)

0,S* «+ RuN(Z, S")

C* + CosT(0, O.)

if AccepT(C,C*) then

S,C + §*,C~

end if

N+ N+1
end while

16

Accept Function

* Metropolis-Hastings acceptance probability with a cost function

a(S > S*) =min(1,exp (-f - k) -

where

k = c(S%) — ¢(S)

q(S1S7)

q(5%1S))

y=exp(-0.3k)

1_0

17

Assignment bugs

X=E=»x=a

Run symbolic execution

If o does not flow into a conditional expression, solve Oa(a) = Oe

Otherwise,
* record an executed path as a bit-vector
* perform a guided random search as before and solve pc(a) A Oa(a) = Oe

An Example of Cost

Ooco~NOTULTPHAWNPE

<?php

$sim = similar_text('ABCD', 'AB', $perc);
echo "similarity: $sim ($perc %)\n";
$dist = 100 - $perc;

echo "distance: $dist\n\n";

$sim = similar_text('ABCD', 'ABC', $perc);
echo "similarity: $sim ($perc %)\n";

$dist = 100 - $perc;

echo "distance: $dist\n\n";

$sim = similar_text('ABCD', 'ABCD', $perc);
echo "similarity: $sim ($perc %)\n";

$dist = 100 - $perc;

echo "distance: $dist\n\n";

Result:

similarity: 2 (66.666666666667 %)
distance: 33.333333333333

similarity: 3 (85.714285714286 %)
distance: 14.285714285714

similarity: 4 (100 %)
distance: 0

19

FAngelix idea 2: No exhaustive search

X v X
A’\
~
\\\ /,,v

20

Angelic path ‘S X (refinement)

« H 7] path:
{"18-15-18-19": [1, 1, O, O]}
« &OLEI angelic path:
{"18-15-18-19": [1, 0, 1, O]}
« X =l angelic path:
{"18-15-18-19":[1, 1, 1, O]}

>
not

Subject LoC Tests Versions
WIRESHARK 2814K 63 5!
PHP 1046K 85 21
Gzip 491K 12 4
GMP 145K 146 2
LIBTIFF 77K 78 18

>
oot

RN
o

o

correct patches

21t
i Angelix
- FAngelix
III e w/o Ref
\a

S N
\g \g
5 AREIIR A

Sk

— } else if (td—=>td_nstrips > 1

&4&: td—>td_compression — COMPRESSION_NONE
+ } else if (td—=td_nstrips > td->td_nstrips

84&: td—>td_compression — COMPRESSION_NONE

(a) An incorrect patch generated from Angelix

— } else if (td—>td_nstrips > 1

84 td—>td _compression — COMPRESSION_NONE
+ } else if (td—=>td_nstrips > 2

&4&: td—>td_compression — COMPRESSION_NONE

(b) A correct patch generated from FAngelix

repair time (s)

? Angelix
o0 ey 0 FAngelix
6000
4000
==5 é =
—
—_
2000
- - — — — T T =
0
\ N O N D < < N . X
S RS RS O O & & RS & g
> ac & s S & AN A o \
X A © o (bQ) @ N ,\r\ & q:\
® 2 P 2 S © A %5) >
\;‘b A% L% N Q Q & Q A/ 23

1 Angelix

B FAngelix

2000

1750

1500

I

o

Te)

N
s)

(

1000

awl} Jiedal

750

500

250

[Angelix
. — 0 FAngelix

repair time (s)

500
) é
400 = =
= -
300]
=
200 _ - — _
— _
D o o 3 3 Q o S o 3 \a
o > P & \a o N g O /\(o\ O O ‘bb\
© X (o A (bq/ ol ,\Q, 0y < Q‘)\ o S
N © 9-’6 q{bb‘ o A N (bé\ O Cb'\“J Q,(b >
\% V v N V < Q Q © Q &’ ’V% A

Cost AFE 0| 217t =7}

[— [IgnoreCost 1 IgnoreCost
[FAngelix 6000 é 8 FAngelix
600
5000
500
@ 0
Py ©
E £ 4000 =
= 400 T
a Q.
qd o — Q
——
300
=
2000
=
200 — e ==
9 i o \a \g o o o O
o 9 & © A © & R o
N @ 4 oV > O AV o) AN
&£ No 2 P & A° @ o %

Cost AFE 0| 217t =7}

[IgnoreCost
0 FAngelix

300

280

(

® 260

o
=
N

) awi} Jiedal

220

200

repair time (s)

Cost AFEO| 217} }UE=7}7

1000 — [IgnoreCost
N FAngelix
800 =
600
S - ==
400
200 ;ﬁ
& & \S O © O O O O

Verifix: Verified Repair of Programming Assignments

UMAIR Z. AHMED, ZHIYU FAN,

JOOYONG YI, OMAR |. AL-BATAINEH,
ABHIK ROYCHOUDHURY

TOSEM, 2022

Overfitting Problem

Incorrect Patch

, Correct program

Test4

32

Overfitting Problem

void main(){
int nl, n2, iI;
scanf("%d _%d", &n1, &n2);
if(n2 <= 2) // Repair #1: Delete spurious print
printf("%d ", n2); // Verifix v/, Clara X

for(i=n1; i<=n2; i++){
if (check_prime(i)==0) // Repair #2: Delete ==
printf("%d_ ", i); // Verifix v/, Clara v/

O OO0 I O U1 v W DN =

S
>
o

Overfitting Problem

n
&
58.4
L e ———— .
£ 5
>
S'c 50 - Verifix
3§ — Clara
<T 41.3 i i
 + 40 37.2
o =
2 32.3
> 30]
am
O
25 50 75 100

Visible Test-Case Sampling %

Approach

. : : int check_prime(int n)
int check_prime(int n) {

{

if (n == 1)

return 0; int i:
int j; for(i=1;i<=n—T1;i++)
for(j=2; j<n; j++) {
{ if (n%i == 0)

if (n%j == 0) break;

return 0; }

} return 1;
return 1; }

Reference program Incorrect student program

Program > Control Flow Automata

int check_prime(int n)

{

if (n == 1)

return 0;

int j;
for(j=2; j<n; j++)
{
if (n%j == 0)
return 0;

}

return 1;

Reference program

Program > Control Flow Automata

int check_prime(int n)

{
int i;
for(i=1;i<=n—1;i++)
{
if (n%i == 0)
break;
}
return 1;
}

Incorrect student program

Aligning CFAs and variables

S N

7 <n]

r N
[n%j! = 0]
j=Jj+1
—

7 <n]

(. J

Vs

[n%j == 0]
ret =0
\ J

{ret & ret’,n & n’,j & i’}

{ret & ret’,n & n’,j & i’}

1 1
Pedge * ¢q1q’1 AYr A5 A quzq;

Gqiq: (reto =rety) A (no = ng) A (jo = i
gquqé: (rety =ret]) A(n1 = n3) A (j1 = ij

/

[[Truel

|

1 1
Pedge * ¢q1q; AYr A5 A ﬂQIquq;

Yr: (mo#1 = j1=2) A (=(no#1) = j1=jo)
Yi: (True = ii=1) A (=True = i} =iy)

Minimal Edge Repair via CEGIS

1 1
Pedge * ¢q1q’1 ANYr ANYs A _'¢qzq; — >

solver

Minimal Edge Repair via CEGIS

1 1
Pedge * ¢q1q’1 ANYr ANYs A _'¢qzq; — >

solver

1 SMT
¢qlqi A ¢r /\){/\ _'¢qu; A ¢ce - solver
I

(ng#1 = i;=1) A ((nyg#1) = i;=1iy)

Minimal Edge Repair via CEGIS

1. 1 SMT o
(pedge) ¢q1q1 A ¢r N\ ¢s N\ _'¢qzq; —_— gbie : g = n(’) = 1,J0 = l(') =0

solver

1 SMT
¢q1q; A ¢r /\){/\ _'¢qzq; N ¢ce — solver — Unsat
T

(ng#1 = i;=1) A ((nyg#1) = i;=1iy)

Yr: (no#1 = j1=2) A (0(ng#1) = j1=jo)
l//slz (True = i{ =1) A (—-True = i; = l(’))

Minimal Edge Repair via CEGIS

SMT
¢QIQ1 Al//r A){A _'¢qqu A ‘.Vf‘a - solver
I

(ng#1 = i;=1) AN (=(ng#1) = i] =1i))

Minimal Edge Repair via CEGIS

1 2 SMT
¢q1q’1 A l//r A){A _'¢qzq; AN ¢ce N ¢ce — solver — Unsat

1

(ng#1 = i7=2) AN (—(ny#1) = i;=i)

Yr: (Mo#1 = j1=2) A (=(no#1) = j1 =jo)

ot (True — 1; — 1) A\ (—nTrue - l; = l(’))

AlS
=

. A T,

- 2870 =202 ENZFH Fetot 341702 ALt 7tsot obdl =12k
« O|™ AL[FsE’17]0l| A F 2Fet GOl E (Indian Institute of Technology Kanpur)
« Zf =MOtC} instructor 7t Af-d ot E T2 AL H[A E A O] & &Y
o H| CHA: Clara [PLDI'18]
- CEEMEZ X|Jot= 2| S/ E =

x| 27| H| o

0.75 - \/erifix
2050 | ommmm——— -== Clara
wn
T
0 0:25
0.00 -
0.0 0.5 1.0 1.5 2.0

Relative Patch Size (RPS)

RPS = Dist(ASTs, ASTr)/Size(ASTs)

Lab-ID | # Prog- Repair (%) Struct. Mismatch (%)

rams | Clara Verifix | Clara Verifix
Lab-3 63 | 54.0% 92.1% 0.0% 0.0%
Lab-4 117 | 71.8% 74.4% 7.7% 71.7%
Lab-5 82 | 22.0% 45.1% | 75.6% 35.4%
Lab-6 79 | 12.7% 21.5% | 83.5% 69.6%
Overall 341 | 42.8% 58.4% | 40.2% 27.2%

Clara and Sarfgen fail to handle our example

int check_prime(int n)

int check_prime(int n) {
{
if (n == 1)
return 0; int i:
int j; for(i=T1;i<=n—T1;i++)
for(j=2; j<n; j++) {
{ if (n%i == 0)
if (n%j == 0) break ;
return 0; }
} return 1;
return 1; }
}

Reference program Incorrect student program

HAl §&& Hluw (Ch= S5 Z20E- AFEA|)

Overall Repair Success Rate with Multi-Referene Program

100.0%
90.0% —— -&Clara

80.0% — -®Verifix

; 65. 4% 68.9% 69.5%
70.0% 62.57% J ./

40.0%

programs

2% g
60.0% J:_f - == —A
62.2% 63.0%
K 50.7%
42.8%

30.0%

20.0%

10.0%

Repair scuess rate of incorrect

0.0%
0% 25% 50% 75% 100%

Sampling rate of multiple reference programs

Testing Patches Under Preservation Conditions To Combat the Overfitting
Problem of Program Repair

Elkhan Ismayilzada, Md Mazba Ur Rahman,
Dongsun Kim, Jooyong Yi

Ct==2| Plausible I X| Z=XY

Patch Space

r FE)

Patch Plausible Patches
PaFch @ >

: Patch

Patch

| ; Correct Patch
Patch - Patch

Generate — validate — hesess
g [r—
(Test Suite) (Developer) 2

Patch Classification =X|

o A El plausible patch 7 correct@F I X| Q1 7}2

Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

- double ret;
+ double ret = 1.0;
double d = getDenominatorDegreesOfFreedom();
+ if (d > 2.0) {
ret =d / (d — 2.0);

double ret;
double d = getDenominatorDegreesOfFreedom();
-ret=d/(d - 2.0);

+ret=d/(d+ 2.0); \
+
(a) An incorrect patch for Math95 (b) A correct patch for Math95.

Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

}
PATCH-SIM & -&: 2= (14) incorrect patchE =HIE I X| 2 Q4]
- double ret;
double ret: + double ret = 1.0;
double d = getDenominatorDegreesOfFreedom(); im:jble d = getDenominatorDegreesOfFreedom();
-ret=d/(d - 2.0), +if (d > 2.0){
+ret=d/(d+ 20); } ret =d/(d — 2.0);
+

(a) An incorrect patch for Math95 (b) A correct patch for Math95.

Patch Classification =Xl| 0

public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/» expected output =/ 0.975, x, /» delta =/ 1.0e—5);

| ODS M&: 2HIZ M| E Q2= TjX|Z QIAl
- double ret;
double ret; + double ret = 1.0;
double d = getDenominatorDegreesOfFreedom(); double d = getDenominatorDegreesOfFreedom();
- ret=d/(d — 2.0); +if (d > 2.0) {
rret=d/(d+20);) ret =d/(d - 2.0);

(a) An incorrect patch for Math95 (b) A correct patch for Math95.

Patch Classification2| {2 =

e Score-based M2 H:

e recalldf precisione 25+ =0| =& YA]

|l
o>|
(0] 3

§ot7| Ojdi=

£
[ulo
>

Patch Classification2| {2 =

» Evidence-based &2 H:

e X[l Z2ZHO| A L0 CHSH crashE 27| ™ 102 O &0l M A 2|
- YHtM O = MESH7| 0=
* Java 52| A 00| Al = exception ‘& d0| 25|2] 7|CHE| = HAE X =X

= =X d=ot A Q| B
public void testSmallDegreesOfFreedom() {
FDistributionlmpl fd = new FDistributionlmpl(1.0, 1.0);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
assertEquals(/+ expected output =/ 0.975, x, /+ delta =/ 1.0e—5);

public void testSmallDegreesOfFreedom(double d1,
double d2, double d3) {
FDistributionlmpl fd = new FDistributionlmpl(d1, d2);
double p = fd.cumulativeProbability(d3);
double x = fd.inverseCumulativeProbability(p);
// Which expression should be used in the following blank
// to express the correct output for a given random input?
assertEquals(/= expected output */ , X, /+ delta »/ 1.0e—5);

inf{x in R | P(X <= x) >= p} for 0 < p<=1
inf{x in R | P(X<=x)>0}forp=0

Change Contract [ISSTA'13]

Stack.scc

public class Stack<E> {

/*¥@changed_behavior
@ when_signaled (IllegalStateException e)
@ e.getErrorCode() == 100; // observed erroneous behavior
@ signals (IllegalStateException e) false; // should be fixed
@x/
public void push(E item);
¥

Preservation Condition

public void testSmallDegreesOfFreedom(double d1,
double d2, double d3)
try {
FDistributionlmpl fd = new FDistributionlmpl(d1, d2);
double p = fd.cumulativeProbability(d3);
double x = fd.inverseCumulativeProbability(p);
Log.logOutlf(/+ preservation condition +/true,
/= outputs to compare «/ () —> new Double[] {x});
} catch (Exception e) {
// original (pre—patched) version: ignore
// patched version: log a predefined message
Log.ignoreOutOfOrg();

PFlog(A) ifP (@) =t
} Pl—logOutlf((p,/l):{ + log(A) org Feval(g) = true

P+ nop otherwise

h

Preservation Condition

public void testGed(int i, int j) {
/= Original body:
try {
MathUtils.gcd(Integer. MIN_VALUE, 0);
fail("expecting ArithmeticException");
} catch (ArithmeticException expected) { // expected } «/
try {
final long actual = MathUtils.gcd(i, j);
boolean complement = !((i==Integer. MIN_VALUE && j==0)
|| (i==0 && j==Integer.MIN_VALUE));
Log.logOutlf(complement, () —> new Long[] { actual });
} catch (ArithmeticException e) {
Log.logOutlf(!complement, () —> new String[] { e.toString() });
} catch (Exception e) { Log.ignoreOutOfOrg(); }

A Ty

e PATCH-SIM[ICSE’18] L O] E{ Al
* 139 patches (77 buggy versions)
« 7|Z A[IcSE’20]0| Al 350 patches =7}

>
not

1IN
=

Patches Precision Recall
Project Incorrect | Correct || PORACLE PALCH OPAD PORACLE FALCH OPAD
-SIM -SIM
Chart 24 / 24 212 100% / 100% | 100% / 100% | 67% |/ 67% 71% / 71% | 58% / 58% | 8% / 8%
Lang 11/ 32 4/19 100% / 100% | 100% / 65% 50% / 50% 82% /59% | 54%/ 34% | 9% / 3%
Math 64 /250 | 19/ 98 100% / 99% | 100% / 96% 81% / 68% 62% / 59% | 52% | 26% | 27% /| 16%
Time 13/ 20 2413 100% / 100% | 100% / 100% | 100% / 100% || 77% / 63% | 69% / 50% | 54% |/ 40%
Total 112/326 |27 /132 || 100%/99% | 100% / 92% 82% | T1% 70% / 60% |55% / 31% | 24% | 16%

SRR
Bty Patches Precision Recall
J Incorrect Correct PORACLE ODS PORACLE ODS

Chart 23 /23 22 100% / 100% 100% / 100% 70% |/ 70% 57% | 57%
Lang 10/ 26 3/10 100% / 100% 100% / 78% 80% /58% 90% / 96%
Math 60/ 177 19/ 64 100% / 99% 92% |/ 90% 68% / 61% 55% / 84%
Time 13/ 16 2./ 100% / 100% 92% | 70% 77% | 69% 85% /| 88%
Total 106 / 242 26 / 83 100% / 99% 94% | 88% 71% |/ 62% 62% | 83%

>
oot

24}

(a) Rightly rejected patches

Poracle

(b) Rightly accepted patches

200

200
0

bul=)ly JoYV

800 1200

400
Before filtering

o o)
=) =)
® <

buli=y|ly 1YY

1200

100
Before filtering

0

Preservation Condition2| complexity

[\
=)

o
8]

—
=)

ol

Complexity

c
-

I
&)

Chart Lahg Math Time
Project

=

* FAngelix: Iff X

o Verifix: I|X| H=2td BES

« Poracle: I X|

